Almost sharp fronts for the surface quasi-geostrophic equation.
نویسندگان
چکیده
We investigate the evolution of "almost sharp" fronts for the surface quasi-geostrophic equation. This equation was originally introduced in the geophysical context to investigate the formation and evolution of fronts, i.e., discontinuities between masses of hot and cold air. These almost sharp fronts are weak solutions of quasi-geostrophic with large gradient. We relate their evolution to the evolution of sharp fronts.
منابع مشابه
Behavior of several two-dimensional fluid equations in singular scenarios.
We give conditions that rule out formation of sharp fronts for certain two-dimensional incompressible flows. We show that a necessary condition of having a sharp front is that the flow has to have uncontrolled velocity growth. In the case of the quasi-geostrophic equation and two-dimensional Euler equation, we obtain estimates on the formation of semi-uniform fronts.
متن کاملAbsence of splash singularities for surface quasi-geostrophic sharp fronts and the Muskat problem.
In this paper, for both the sharp front surface quasi-geostrophic equation and the Muskat problem, we rule out the "splash singularity" blow-up scenario; in other words, we prove that the contours evolving from either of these systems cannot intersect at a single point while the free boundary remains smooth. Splash singularities have been shown to hold for the free boundary incompressible Euler...
متن کاملFractional spectral vanishing viscosity method: Application to the quasi-geostrophic equation
We introduce the concept of fractional spectral vanishing viscosity (fSVV) to solve conservations laws that govern the evolution of steep fronts. We apply this method to the two-dimensional surface quasigeostrophic (SQG) equation. The classical solutions of the inviscid SQG equation can develop finite-time singularities. By applying the fSVV method, we are able to simulate these solutions with ...
متن کاملGlobal Regularity for the Critical Dispersive Dissipative Surface Quasi-geostrophic Equation
We consider surface quasi-geostrophic equation with dispersive forcing and critical dissipation. We prove global existence of smooth solutions given sufficiently smooth initial data. This is done using a maximum principle for the solutions involving conservation of a certain family of moduli of continuity.
متن کاملThe vortex patch problem for the surface quasi-geostrophic equation.
In this article, the analog of the Euler vortex patch problem for the surface quasi-geostrophic equation is considered.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 101 9 شماره
صفحات -
تاریخ انتشار 2004